Bodenverdichtung – der Unterboden macht dicht

So kann sich Bodenverdichtung im Feld auswirken:

Abb. 1 Stehendes Wasser: eine Folge von Bodenverdichtung.

Abb. 2 Vergleich von verdichtetem (links) und lockerem Boden (rechts).

Abb. 3 Ungleichmässiger Erbsenbestand aufgrund von Bodenverdichtung.

Abb. 4 Beinigkeit bei der Zuckerrübe bei verdichtetem Boden (links).

Folgen der Bodenverdichtung sind:

- verändertes Bodengefüge: grosse, kompakte, scharfkantige Klumpen;
- weniger Hohlräume;
- Merkmale von Sauerstoffmangel (rostige oder graublaue Flecken);
- eingeschränkte Durchgängigkeit für Stoffe und Lebewesen;
- stauende Nässe;
- Sauerstoffmangel;
- verringerte N-Mineralisierung;
- schlechte Strohrotte;
- schlechte Durchwurzelbarkeit;
- für Pflanzenwurzeln ungünstige Wachstumsbedingungen.
Bodenverdichtung geschieht heimlich.

Die Ergebnisse zahlreicher Versuchsreihen bestätigen, dass mit zunehmender Radlast die Bodenverdichtung in immer grossere Tiefen reicht. Mit der Verwendung breiter Reifen wird der Unterboden nur dann geschont, wenn die Radlast nicht zunimmt.

Abb. 5 Schwere Erntemaschinen erhöhen die Schlagkraft, aber auch die Gefahr der Unterbodenverdichtung.

Abb. 6 Bei schweren Maschinen bringt eine breite Bereifung nicht den gewünschten Effekt.

Bodenverdichtung hängt von verschiedenen Faktoren ab:

Natürliche Faktoren:
- Bodenfeuchte (siehe nachfolgend)
- Bodenart (Sand-, Schluff-, Tonboden) (siehe nachfolgend)
- Lagerungsdichte
- Bodengefüge

Menschliche Faktoren:
- Befahren und Bearbeiten zum falschen Zeitpunkt
- Überlockerte Bodenbedingungen

Bodenfeuchte
Im trockenen Zustand ist der Boden tragfähig. Die Gefahr der Schädigung durch schwere Fahrzeuge und Maschinen ist viel geringer als im feuchten Zustand.

Technische Faktoren:
- Radlast
- Schlupf
- Mehrfachbefahrung/Fahrspurflächenanteil
- Kontaktflächendruck *

*M Kontaktflächendruck = Gewicht pro Auflagefläche
Er ist abhängig von: Reifendimension; Reifenbauart; Reifeninnendruck; Radlast.

Bodenart
Ein leichter, sandiger Boden ist bei gleicher Feuchtigkeit wesentlich weniger verdichtungsgefährdet als ein schwerer, toniger Boden. Schwere Böden mit hohem Tonanteil sind zwar im trockenen Zustand hart und tragfähig, feucht können sie jedoch irreparabel verdichtet werden.

Darstellung zur Beurteilung der Bearbeitbarkeit und Befahrbarkeit des Bodens

Bearbeitung: unterlassen!
In diesem Zustand wird der Boden durch die Bearbeitungsgeräte mechanisch zertrümmert und dadurch stark geschädigt.

Befahren: idealer Zustand.
Der Boden ist tragfähig.

Bearbeitung: Idealer Zustand.
Der Boden zerbricht entlang der Trennflächen seiner Teilchen.
Befahren: möglich.
Der Boden ist aber verdichtungsgefährdet, wenn schwere Maschinen oder ungünstige Reifen verwendet werden.
Boden vor Verdichtung schützen.

Die folgenden technischen und betrieblichen Massnahmen nützen nur, wenn der Boden im trockenen Zustand befahren wird.

Zum Beispiel durch Absenken des Reifeninnendrucks

Die Vorteile eines tiefen Reifendruckes sind in der Praxis viel zu wenig bekannt:
• die Kontaktfläche lässt sich über ein Drittel vergrößern; breitere Fahrsuren sind weniger tief und ergeben weniger Bodenverdichtung;
• Zugvermögen der Reifen nimmt zu;
• auf weichem Boden sinkt der Reifen weniger ein;
• nicht der Boden, sondern der Reifen verformt sich.

All diese Vorteile dürfen nicht darüber hinwegtäuschen, dass die Absenkung des Reifendruckes auch gewisse Grenzen hat. Z. B. bei Strassenfahrten nimmt der Verschleiss und die Gefahr der Überhitzung der Reifen mit sinkendem Innendruck stark zu. Hier können Regeldrucksysteme Abhilfe schaffen.

Abb. 7 Auswirkungen der Absenkung des Reifeninnendrucks auf den Boden.

Bearbeitung: unterlassen!
Der Boden wird verformt und verknetet.
Befahren: unterlassen!
Der Boden wird verdichtet.

Die Erde ist knetbar.

Abb. 8 Regeldrucksysteme schaffen Abhilfe! Kompromiss zwischen Feld- und Strassenfahrten.

Abb. 9 Anhänger mit reduziertem Pneuinnendruck für Feldeinsatz.

Bei welchen Geräten und Maschinen sollten Reifendruckregelanlagen zum Standard gehören?
• Selbstfahrende Zuckerüben- und Kartoffelvollernte;
• Mahdrescher, selbstfahrende Häckser;
• Grosse Güllefässer, Mist- und Kompoststreuer, Silieranhänger, Grossballenpressen.

Weitere technische Massnahmen:
• Fahrzeuggewicht (Leergewicht und Lasten) tief halten;
• Breiteste Bereifung mit grösstmöglichem Durchmesser wählen;
• Gewicht mittels Doppel- und Mehrfachbereifung verteilen.
Massnahmen im Bereich der Bewirtschaftungsplanung und Anbautechnik:

- Direktsaat, Mulchsaat und Streifenfrassaat verbessern die Tragfähigkeit des Bodens;
- flache Bearbeitung möglichst mit gezogenen Geräten;
- Minimierung der Bodenbearbeitung bezüglich Tiefe, Fläche, Intensität;
- On-land-Pflug;
- Förderung der Gefügestabilität (Bestimmung von Humusgehalt und pH);
- Kulturwahl und Fruchtfolgegestaltung an die Standortbedingungen anpassen.

Abb. 10 Grossvolumige Reifen.

Abb. 11 Direktsaat.

Abb. 12 Einsatz von Mehrfachbereifung und Mulchsaat.

Abb. 13 Einsatz des On-land-Pfuges.

Übrigens:

- Bodenverdichtung ist auch ein Thema im Grünland: Futterbau wird vorwiegend in niederschlagsreichen Zonen mit entsprechend feuchten Böden betrieben.
- Die Sanierung von Bodenverdichtung ist im Grünland kaum realisierbar, und es ist mit verminderter Schnittnutzung zu rechnen.

Gesetzliche Bestimmungen.

Juni 2005

Ansprechpartner:
AG: Abteilung für Umwelt, Baudepartement, Sektion Boden und Wasser, Entfelderstrasse 22, 5001 Aarau, 062 835 33 60, umwelt.aargau@ag.ch
BE: Amt für Landwirtschaft und Natur, Bodenschutzfachstelle, Rüttig, 3052 Zollikofen, 031 919 53 37, peter.hofer@vol.be.ch
BL: Landwirtschaftliches Zentrum Ebenrain, Postfach, 4450 Sissach, 061 976 21 23, schulen.lze@vsl.bl.ch
LU: Amt für Umwelt und Energie Luzern, Abteilung Boden und Abfall, Libellenrain 15, 6002 Luzern, 041 228 60 60, uwe@lu.ch
SO: Amt für Umwelt, Fachstelle Bodenschutz, Werkhofstrasse 5, 4509 Solothurn, 032 627 24 47, afu@bd.so.ch
BZ Wallerhof, Zentralstelle für Düngerberatung, Höhenstrasse 46, 4533 Riedholz, 032 627 09 75/76, bernhard.straessle@vpe.so.ch

Autoren:
Arbeitsgruppe Landwirtschaftlicher Bodenschutz Nordwestschweiz und LU (Norbert Emch, Urs Mühlethaler, Peter Hofer, Markus Egli)

Bildnachweis: Abb. 1: J. Rösch; Abb. 2: R. Brandhuber; Abb. 3: E. Kraner; Abb. 4, 10: W.G. Sturm; Abb. 5: Internet; Abb. 6, 7, 8: U.W. Flück nach R. Brandhuber und PTG GmbH; Abb. 9: P. Weisskopf; Abb. 11, 12, 13: P. Hofer; Darstellung zur Beurteilung der Bearbeitbarkeit und Befahrbarkeit des Bodens: BIWAL/Docophot AG

Satz und Gestaltung: aufdenpunkt.ch – Urs W. Flück, Langendorf